
P. Bozanis and E.N. Houstis (Eds.): PCI 2005, LNCS 3746, pp. 256 – 266, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Middleware for Building Ubiquitous Computing
Applications Using Distributed Objects

Nicolas Drosos, Eleni Christopoulou, and Achilles Kameas

Research Academic Computer Technology Institute, Research Unit 3, Design of Ambient,
Intelligent Systems Group, N. Kazantzaki str., Rio Campus, Patras, Greece

{ndrossos, hristope, kameas}@cti.gr

Abstract. Ubiquitous systems are characterized by multi-fold complexity,
stemming mainly from the vast number of possible interactions between many
heterogeneous objects and services. Devices ranging from simple everyday ob-
jects populated with sensing, actuating and communication capabilities to com-
plex computer systems, mobile or not, are treated as reusable “components” of
a dynamically changing physical/digital environment. As even an individual ob-
ject with limited functionality, may present advanced behavior when grouped
with others, our aim is to look at how collections of such distributed objects can
collaborate and provide functionality that exceeds the sum of their parts. This
paper presents GAS-OS, a middleware that supports building, configuring and
reconfiguring ubiquitous computing applications using distributed objects.

1 Introduction

The vision of Ambient Intelligence (AmI) implies a seamless environment of comput-
ing, advanced networking technology and specific interfaces [5]. In one of its possible
implementations, technology becomes embedded in everyday objects such as furni-
ture, clothes, vehicles, roads and smart materials, and people are provided with the
tools and the processes that are necessary in order to achieve relaxing interactions
with this environment. The AmI environment can be considered to host several Ubiq-
uitous Computing (UbiComp) applications, which make use of the infrastructure pro-
vided by the environment and the services provided by the AmI objects therein. The
target of this paper is to present the GAS-OS, a middleware that we developed and
supports the composition of UbiComp applications from AmI objects. GAS-OS runs
on every AmI object and collectively serves as a distributed component framework.
Moreover, it provides developers of UbiComp applications with a uniform program-
ming model that hides the heterogeneity of the underlying networks, hardware, oper-
ating systems and programming languages.

The structure of the paper is as follows. Section 2 outlines the design challenges of
UbiComp applications and the requirements for a middleware that supports such ap-
plications. Section 3 describes the architecture of the GAS-OS, followed by a real life
application example in section 4. Section 5 presents related approaches and section 6
lessons learned from this work. Finally we conclude in section 7.

Middleware for Building Ubiquitous Computing Applications Using Distributed Objects 257

2 Design Goals

The design goals of a middleware that supports the composition of UbiComp applica-
tions are tightly interrelated to the challenges arising from the deployment of such
applications and also emerge from the requirements of generic middleware systems.

According to the AmI vision people will build “ecologies” (UbiComp applications)
by configuring and using AmI objects; everyday objects augmented with Information
and Communication Technology (ICT) components. AmI artefacts can be seen as
distributed objects since data, behavior and services encapsulated must be accessed
remotely and transparently to the overall application. An important aspect though is
that these augmented objects still maintain their primary role and autonomous nature.
Furthermore, in order to compose UbiComp applications using artefacts, they must
provide the means to be easily used as building blocks of large and complex systems.

In addition, because of the heterogeneity of these objects, a key challenge that
arises is the feasibility of semantic interoperability among them. As AmI artefacts are
resource constraint devices, grouping them together could emerge more advanced
behaviors. Thus their composeability is a challenge that can give rise to new collec-
tive functionalities. As artefacts in UbiComp applications may offer various services,
the challenge of a semantic representation of services and a semantic service discov-
ery mechanism is evident. UbiComp applications also need to be adaptive to changes,
robust and fault-tolerant as they are usually created in an ad-hoc manner, and AmI
objects are liable to failures. They must also be context-aware to understand the envi-
ronment and adapt their behavior to different situations. Scalability is also very im-
portant since UbiComp applications are usually composed by a large number of
objects.

Considering the users’ perspective, a key challenge is the ease of use, development
and deployment. The combination of objects needs to be based on a user-oriented and
user-friendly model. This implies that objects’ capabilities must be “advertised” to
users through a comprehensible “vocabulary”.

Considering the system’s perspective, the heterogeneity of artefacts implies mid-
dleware systems on top of which applications can function transparently based on the
infrastructure. To preserve the autonomy of artefacts and to cater for the dynamic
nature of such applications ad-hoc networking has to be supported. The underlying
physical networks used are heterogeneous ranging from infrared communication over
radio links to wired connections. Since every node serves both as client and server
(devices provide/ request services), the required communication can be seen as p2p.

Due to the dynamicity of UbiComp applications and the mobility of artefacts, the
middleware has to consider services and capabilities of changing availability. Even a
service that is both functional and reachable can become unavailable (volatility prob-
lem). Furthermore, as any object can become an artefact, regardless of its physical
(e.g. power) or computational properties (e.g. memory), the core functionality should
be small enough to be executed on resource constrained devices, but extensible to use
the capabilities of more powerful devices as well. Therefore, we should not pose se-
vere restrictions, like the assumption of a specific platform (platform independence).
Various manufacturers should be able to implement their consumer solutions on a
variety of platforms, not predefined in advance. At the same time, the middleware has
to cope with the unavoidable heterogeneity in service definition and deployment.

daisy
Rectangle

258 N. Drosos, E. Christopoulou, and A. Kameas

Since UbiComp applications can be synthesized by end-users, the middleware has
to support a user-oriented conceptual model. Additionally interacting with the system
has to be done in real time since services must be available to users at each particular
moment. Finally, middleware systems aiming at a broad range of applications, should
remain open, capable of collaborating with established technological solutions and
standards for communication, interoperability etc.

3 Designing the Middleware to Support UbiComp Applications

Before we describe the architecture and implementation of GAS-OS, the proposed
middleware for building UbiComp applications, we first want to motivate our design
rationale with respect to the challenges and requirements stated above.

GAS-OS implements the concepts encapsulated in GAS [6], a generic architectural
style, which can be used to describe everyday environments populated with computa-
tional objects. The key idea behind GAS-OS is the uniform abstraction of AmI object
services and capabilities via the plug/synapse high-level programming model that
abstracts the underlying data communications and access components of each part of
a distributed system. The basic idea is that users connect at a logical level a service or
content provider and a client, and thus compose applications in an ad-hoc, dynamic
way. Simply by creating associations between distributed objects, people cause the
emergence of new applications, which can enhance activities of work, re-creation or
self-expression, rendering their involvement in a natural and abstract way. Further-
more the plug/synapse model serves as a common interfacing mechanism among AmI
objects providing the means to create large scale systems based on simple building
blocks. Plugs are software classes that make visible the object’s properties, capabili-
ties and services to people and to other objects, while synapses are associations be-
tween two compatible plugs, which make use of value mappings and are implemented
using a message-oriented set of protocols.

Typical middleware platforms address the problem of communication using the
Remote Procedure Call (RPC) model. This is not applicable in our case, because each
object is autonomous, having no dependencies from fixed centralized nodes. Inspired
by Message-Oriented Middleware (MOM) design a fundamental characteristic of
GAS-OS is to enable non-blocking message passing. Messaging and queuing allow
nodes to communicate across a network without being linked by a private, dedicated,
and logical connection. Every node communicates by putting messages on queues and
by taking messages from queues. To cope with the requirement to adapt to a broad
range of devices even the more resource constraint ones, ideas from micro-kernel
design were taken under consideration, where only minimal functionality is located in
the kernel, while extra services can be added as plug-ins.

Furthermore, we decided to adopt Java using a JVM layer to assume the responsi-
bility of decoupling GAS-OS from typical local operations like memory management,
communication, etc, also providing the requested platform independence. The JVM
layer allows the deployment on a wide range of devices from mobile phones and
PDAs to specialized Java processors. The proliferation of Java-enabled end-systems
makes Java a suitable underlying layer providing a uniform abstraction for the mid-
dleware masking the heterogeneity of the underlying AmI objects, networks etc.

daisy
Rectangle

Middleware for Building Ubiquitous Computing Applications Using Distributed Objects 259

Using p2p communication also provides the requested support for dynamic appli-
cations over ad-hoc networks. A p2p communication module inside GAS-OS trans-
lates the high-level requests/replies into messages and by using low-level p2p net-
working protocols dispatches them to the corresponding remote service or device
capability.

In order to support the definition and realization of collective functionality as well
as to ensure the interoperability among the objects, all AmI objects should use a
commonly understood language and vocabulary of services and capabilities, in order
to mask heterogeneity in context understanding and real-world models. This is tackled
by using the GAS Ontology [2] that describes the semantics of the basic terms of our
model for UbiComp applications and their interrelations. The term “service” is a fun-
damental one in this ontology, which contains a service classification, since the AmI
objects offer various services and the demand for a semantic service discovery
mechanism is evident. Due to facts that artefacts acquire different knowledge and may
have limited capabilities, we decided to divide the GAS Ontology into two layers: the
GAS Core Ontology (GAS-CO) that represents the necessary common language and
the GAS Higher Ontology (GAS-HO) that describes an artefact’s acquired knowl-
edge.

3.1 GAS-OS Architecture

The outline of the GAS-OS architecture is shown in Fig.1. Synapses are established at
the application layer of the GAS-OS architecture (Fig. 1) using APIs and protocols
provided by GAS-OS kernel. The GAS-OS kernel implements the plug/synapse
model manifesting the services and capabilities of AmI objects through plugs, while
providing the mechanisms (API and protocols) to perform synapses with other AmI
objects via the application layer. Synapses can be considered as virtual communica-
tion channels that feed the lower communication levels with high-level data. Interfac-
ing with networking mechanisms (transport layer) is done via the Java platform. Data
are transmitted through the physical layer to the other end of the synapse where the
reverse transformation process is followed. Data departing from a plug are the result
of internal processing of an AmI object usually involving sensor data. Data arriving to
plugs are usually translated to AmI object behavior (e.g. activate a specific actuator in
order to achieve a goal). Using ontologies and the ontology manager plug-in (pre-
sented in section 3.2), this translation is done based on the commonly accepted terms
of GAS, as encoded in GAS-CO. The resource manager plug-in on the other hand
keeps track of available local resources and arbitrates among conflicting requests for
those resources. Resources include OS-level resources (memory, CPU, power, etc) as
well as high-level resources (sound, light, etc). Through the well-defined interfaces of
the plug-in manager, other plug-ins (e.g. security), not currently supported, can be
attached to the GAS-OS architecture.

The GAS-OS kernel is the minimum set of modules and functionalities every dis-
tributed object must have in order to participate in ubiquitous applications. The GAS-
OS Kernel encompasses a Communication Module, a Process Manager, a State Vari-
able Manager, and a Memory Manager as shown in Fig. 1.

daisy
Rectangle

260 N. Drosos, E. Christopoulou, and A. Kameas

Physical Layer (802.11, Bluetooth, IrDA, etc)

Transport Layer (TCP/IP, UDP, Sockets, etc.)

Resource Manager
plug-in

Ontology Manager
plug-in

Application

Java Platform

Memory
ManagerState

Variable
Manager

Process Manager

Communication Module

Other
plug-ins

API

G
A

S
-O

S
 K

er
ne

l
G

A
S

-O
S

pl
ug

-i
ns

A
pp

lic
at

io
n

la
ye

r

Device Capabilities
(sensors/actuators)

Plug-in manager

Fig. 1. Left: GAS-OS layered architecture diagram. Right: The GAS Ontology manager

The Communication Module is responsible for communication between GAS-OS
nodes. P2P communication is implemented adopting the basic principles and defini-
tions of the JXTA project. Peers, pipes and endpoints are combined into a layered
architecture that provides different levels of abstraction throughout the communica-
tion process. Peers implement protocols for resource and service discovery, adver-
tisement, routing as well as the queuing mechanisms to support asynchronous mes-
sage exchange. In order to avoid large messages and as a consequence traffic conges-
tion in the network, XML-based messages are used to wrap the information required
for each protocol. Pipes correspond to the session and presentation layers of the ISO-
OSI reference model, implementing protocols for connection establishment between
two peers, supporting multicast communication for service and resource discovery,
while at the same time guaranteeing for reliable delivery of messages. In cases where
reliable network protocols are used in the transport layer (e.g. TCP/IP), pipes are
reduced to acknowledging for application-level resource availability. Endpoints are
associated to specific network resources (e.g. a TCP port). According to the transport
layer chosen we can have many different endpoints (e.g. IP-based, Bluetooth, IrDA,
etc.), which can also serve as a bridge for different networks. Finally, in order to dis-
cover and use services and resources beyond the reachability of wireless protocols
(e.g. RF), we have adopted the Zone Routing (ZRP) hybrid routing protocol.

The Process Manager is the coordinator module of GAS-OS. Its most important tasks
are to manage the processing policies of GAS-OS, to accept and serve various tasks set
by the other modules of the kernel and to implement the Plug/Synapse model. Plugs
wrap the information required to describe a service. If the ontology manager plug-in is
used a higher-level / contextual description of the service may also be available. Syn-
apses are software entities attached to plugs, wrapping the required information for the
remote plug; also having properties that define the interaction patterns (e.g. interaction
rules). The process manager implements the protocols required supporting creating,
destroying and altering synapses and as a consequence configuring and reconfiguring a
UbiComp application consisted of several AmI objects.

GAS-OS kernel

GAS Ontology manager

GAS Core
Ontology

GAS Higher
Ontology

Service Request Plug Offering Service

GAS Ontology

daisy
Rectangle

Middleware for Building Ubiquitous Computing Applications Using Distributed Objects 261

The State Variable Manager is a repository of the object’s capabilities (e.g. sen-
sors/actuators) inside GAS-OS reflecting at each moment the state of the hardware.
An event-based mechanism is used to facilitate communication between the state
variable manager and the process manager in order to set up a real time reactive
system.

Finally, the Memory Manager enhances the memory management performed by
the JVM towards the specific needs of GAS-OS by queuing tasks and messages, buff-
ering sensor and actuator data, storing the state of the AmI object and caching infor-
mation of other AmI objects to improve communication performance.

3.2 GAS Ontology Manager

The GAS Ontology Manager is the module that manages the GAS Ontology stored at
each artefact and implements the interaction of an artefact with its stored ontology.
Furthermore, it is responsible to provide to the other modules of GAS-OS any knowl-
edge needed from the ontology. The right part of Fig. 1 demonstrates the interaction
among the ontology manager and the GAS-OS kernel. An important feature of the
ontology manager is that it adds a level of abstraction between GAS-OS and the GAS
ontology, meaning that only the ontology manager can understand and manipulate the
ontology; the GAS-OS can simply query this module for information stored into the
ontology without having any knowledge about the ontology language or its structure.

Since GAS-CO must be common for all artefacts and cannot be changed during the
use of UbiComp applications, this module provides only methods for acquisition of
knowledge, such as the definitions of basic concepts and the service classification.
Likewise it can only query the GAS-HO-static of an artifact. On the other hand, as it
is responsible for keeping up to date an artefact’s GAS-HO-volatile, it can both read
and write it. As the GAS-HO contains only instances of the concepts defined in the
GAS-CO, the basic methods of the ontology manager relevant to the GAS-HO can
query for an instance and add new ones based on the concepts defined in the GAS-
CO. Thus an important feature of the GAS Ontology manager is that it enforces the
integrity of the instances stored in the GAS-HO with respect to the concepts described
in GAS-CO.

The interoperability among AmI objects is initially established using the objects’
GAS-HO; if their differences lead to infeasible interoperability, each local GAS On-
tology manager is responsible for the interpretation of different GAS-HOs based on
the common GAS-CO. Thus the semantic interoperability among AmI objects is
greatly improved. The GAS Ontology manager also enables knowledge exchange
among AmI objects by sending parts of an object’s GAS-HO to another object.

One of the ontology’s goals is to describe the services that artefacts provide so
that to support a service discovery mechanism. Thus the ontology manager provides
methods that query the ontology for the services that an artefact offers as well as for
artefacts that provide specific services. The GAS-OS get from the ontology man-
ager the necessary knowledge stored in an AmI object’s ontology relevant to its
services, in order to implement a service discovery mechanism. Finally the GAS
Ontology manager using this mechanism and the service classification can identify

daisy
Rectangle

262 N. Drosos, E. Christopoulou, and A. Kameas

AmI objects that offer similar semantically services and propose objects that can
replace damaged ones. So it supports the deployment of adaptive and fault-tolerant
UbiComp applications.

4 Building a Real Life Home Application

This section demonstrates the development of a real life application starting from a
high level description of the target scenario to its implementation based on the ser-
vices offered by the GAS-OS middleware.

Let’s take a look at the life of Patricia, a 27-year old woman, who lives in a small
apartment near the city centre and studies Spanish literature. A few days ago she
heard about these new AmI objects and decided to give herself a very unusual pre-
sent: a few furniture pieces and other devices that would turn her apartment into a
smart one! On the next day, she was waiting for the delivery of an eDesk (sensing
light intensity, temperature, weight on it, proximity of a chair), an eChair (could tell
whether someone was sitting on it), a couple of eLamps (could be remotely turned on
and off), and some eBook tags (could be attached to a book, telling whether it is open
or closed and determine the amount of light that falls on it). Pat had asked the store
employee to pre-configure some of the artifacts, so that she could create a smart
studying corner in her living room. Her idea was simple: when she sat on the chair
and she would draw it near the desk and then open a book on it, then the study lamp
would be switched on automatically. If she would close the book or stand up, then the
light would go off.

The behavior requested by Pat requires the combined operation of the following set
of AmI objects using their plugs: eDesk (Reading, Proximity), eChair (Occupancy),
eLamp (Light_Switch) and eBook (Open/Close). Then a set of synapses has to be
formed, for example, associating the Occupancy plug of the eChair and the
Open/Close plug of the eBook to the Proximity plug of the eDesk, the Reading plug
of the eDesk to the Light_Switch plug of the e-Lamp, etc.

The capability of making synapses is a service offered by GAS-OS and is imple-
mented in simple steps as described below. Consider the synapsing process among the
Reading plug of the eDesk and the Light_Switch plug of the eLamp.

Initially, the eDesk sends a Synapse Request message to the eLamp containing in-
formation about the eDesk and its Reading plug as well as the id of the Light_Switch
plug. Then the eLamp activates the Synapse Response process by first checking the
plug compatibility of the Reading and Light_Switch plugs, to confirm that they are
not both service providers only (output plugs) or both service receptors only (input
plugs). If the compatibility test is passed, an instance of the Reading plug is created in
the eLamp (as a local reference) and a positive response is sent back to the eDesk.
The instance of the Reading plug is notified for changes by its remote counterpart
plug and this interaction serves as an intermediary communication channel. In case of
a negative plug compatibility test, a negative response message is sent to the eDesk.
Upon a positive response, the eDesk also creates an instance of the Light_Switch
plug, and the connection is established (Fig. 2-left). After connection’s establishment,
the two plugs are able of exchanging data, using the Synapse Activation mechanism.

daisy
Rectangle

Middleware for Building Ubiquitous Computing Applications Using Distributed Objects 263

eDesk

Synapse Request

Positive Response
Light_Switch

Instance

Reading
plug

Light_Switch
plug

ACK

ACK
eLamp

Reading
 Instance

Plug
Compatibility

eDesk

Light_Switch
 Instance

Reading
plug

Light_Switch
plug

SO changed

Update SO

SOL notified

SOL notified

Synapse Activation

eLamp

Reading
Instance

Fig. 2. Synapsing process between Reading and Light_Switch plugs

Output plugs (Reading) use shared objects (SO) to encapsulate the plug data to send,
while input plugs (Light_Switch) use event-based mechanisms, called shared object
listeners (SOL), to become aware of incoming plug data. When the value of the
shared object of the Reading plug changes the instance of the Light_Switch plug in
the eDesk is notified and a synapse activation message is sent to the eLamp. The
eLamp receives the message and changes the shared object of its Reading plug in-
stance. This, in turn, notifies the target Light_Switch plug, which reacts as specified
(Fig. 2-right). Finally, if one of the two connected plugs breaks the synapse, a Syn-
apse Disconnection message is sent to the remote plug in order to also terminate the
other end of the synapse.

But how are the above messages actually exchanged between AmI objects? In the
example, both the eDesk and the eLamp own a communication module with an IP-
based (dynamically determined) Endpoint. Plug/Synapse interactions (e.g. synapse
establishment) are translated to XML messages by the communication module and
delivered to the remote peer at the specified IP address (Fig. 3).

GAS-OS
kernel

Comm

GAS-OS
kernel

Comm

Network
Synapse Request

ACK

ACK

Positive Response

Reading
plug

Light_Switch
plug

eDesk eLamp

eDesk Endpoint
IP:150.140.2.50

eLamp Endpoint
IP:150.140.2.66

Fig. 3. From Plug/Synapse interactions to p2p communication

Sensors
backPressure
seatPressure

eChair
Artifact HW
Management

SW

RO State Variable Value

backPressure true

seatPressure true

eChair
Hardware

State Variable Manager

Occupancy

Process Manager

notify

eChair GAS-OS

Occupied

Actuators
bulb

eLamp
Artifact HW
Management

SW

RW State Variable Value

bulb true

eLamp
Hardware

State Variable Manager

Light_Switch

Process Manager

update

eLamp GAS-OS

On

Synapse
properties

Fig. 4. Communication with hardware

daisy
Rectangle

264 N. Drosos, E. Christopoulou, and A. Kameas

Having described the ways interaction among objects is implemented using GAS-
OS, what is missing to close the loop is interaction with the end-users of the Ubi-
Comp application. This interaction is done via the sensors and actuators each artefact
has, but the way the sensing and actuating data are manipulated by each object is also
facilitated by GAS-OS and specifically through its State Variable Manager. In Fig. 4,
the eChair has two pressures sensors (back, seat) to sense that someone is sitting on it,
and the eLamp has one bulb actuator, both reflected inside GAS-OS as state variables
in the SVM. Through communication with the eChair hardware management software
the eChair’s SVM retrieves all the sensor information of the eChair and registers itself
as a listener for changes of the environment. It also communicates with the Process
Manager to promote the eChair-eLamp communication as it feeds the Weight plug
with new data coming from the hardware that results in the Weight-Light synapse.
The reverse process is followed on the other end of the synapse. The matching of the
“Occupied” / ”Not Occupied” values of the Occupancy plug with the “On” / ”Off”
states of the Light_Switch plug, is done by configuring the properties of the synapse.
So by mapping the “Occupied” state of the eChair to the “On” state of the eLamp and
the “Not_occupied” to “Off” we have the following (desired) behavior: “sitting on the
chair switches the lamp on while leaving the chair switches the lamp off”.

5 System Evaluation

The primary goal for GAS-OS was to serve as a proof of concept that users could be
enabled to configure UbiComp applications by using everyday objects as components.
Following we discuss if GAS-OS meets the demands of UbiComp applications.

GAS-OS proved capable of running on different devices, satisfying our require-
ment for supporting resource constrained devices. Devices were developed ranging
from handheld computers running Win CE and Java PE, to COTS java-based boards
like the EJC [10]. GAS-OS was also tested on devices using Microsoft UPNP proto-
col to communicate with their hardware, running on the SNAP embedded J2ME con-
troller [12], by interfacing UPNP with GAS-OS. The overall integration process
proved easy enough, providing strong indications concerning the independence of
GAS-OS from communication protocols and its interfacing ability with standards.

Fig. 5. L.: Max synapses when constraining memory vs # plugs that can participate. R.: # ob-
jects that can be discovered in a certain period of time vs # of plugs.

daisy
Rectangle

Middleware for Building Ubiquitous Computing Applications Using Distributed Objects 265

Measuring the process of discovering artefacts provided feedback on the efficiency
of GAS-OS to discover a certain number of objects within a time frame and conse-
quently an estimation of how long will the user have to wait in order to discover his
ubiquitous environment. (Fig.5-right) shows the number of objects that can be discov-
ered in successive time intervals, versus the number of plugs. To reach maximum
performance overhead, we have to get to a large number of plugs per object.

As plugs and synapses are the main factors that increase memory requirements dur-
ing the execution of an application, we studied the relation between the number of
plugs and synapses that participate for constraint amounts of memory. Maximum
memory allocation is achieved when each plug participates in only one synapse
(Fig.5-left). The more plugs participating in a synapse, the more the allocated memory
until we reach the memory constraint. From this point and on more synapses can only
be achieved if distributed to fewer plugs.

Using code instrumentation, we measured the average synapsing and communica-
tion time in an application where 5 objects are inter-connected with 6 synapses. After
creating the 1st synapse only a few milliseconds are required to create the rest, while
the average time of approximately 1 sec for all 6 synapses is acceptable. For commu-
nication among 2 objects having a synapse, the average time is only a few millisec-
onds, which is acceptable for real time applications. These measurements include the
overhead of the 802.11b protocol, while messages exchanged vary from a few bytes
to 1 KB. What is important though is that after synapses’ establishment communica-
tion between objects is fast, satisfying our requirement for real time response.

The use of ontologies in order to deal with heterogeneity in service definition im-
proved interoperability of objects. Specifically the service discovery mechanism en-
abled the identification of semantically similar services and GAS-OS, exploiting this,
could replace a failed or moved AmI object with a similar one in satisfactory time.

Finally, GAS-OS, the end-user programming tools (GAS Editor) that use it and the
applications built with it, were evaluated in user and expert trials [7]. During the de-
velopment and deployment of UbiComp applications from both novice and experi-
enced users, we got fairly encouraging results regarding usability, as using GAS Edi-
tor it was proven easy to create, configure and reconfigure UbiComp applications.

6 Related Work

Several research efforts are attempting to design ubiquitous computing architectures.
In “Smart-Its” [4] the aim is to develop small devices, which, when attached to ob-
jects, enable their association based on the concept of “context proximity”. The col-
lective functionality of such system is composed of the computational abilities of the
Smart-Its, without taking into account the “nature” of the participating objects. A
more generic approach is the one of “Oxygen” [11], which enables human-centered
computing by providing special computational devices, handheld devices, dynamic
networks, etc. The “Accord” [9] focuses on developing a Tangible Toolbox (based on
the idea of tangible puzzle) that enables people to easily embed functionality into
existing artefacts around home and permit artefacts to be integrated with each other.

The GAIA system [8] provides an infrastructure to spontaneously connect devices
offering or using registered services. GAIA-OS requires a specific system software

daisy
Rectangle

266 N. Drosos, E. Christopoulou, and A. Kameas

infrastructure using CORBA objects, while mobile devices cannot operate autono-
mously without this infrastructure. In GAIA is used an ontology server that maintains
various ontologies, addressing issues like service discovery and context-awareness; a
fairly different approach from ours. The BASE [1] is a component-oriented micro-
kernel based middleware, which, although provides support for heterogeneity and a
uniform abstraction of services, the application programming interface requires spe-
cific programming capabilities by users. Finally TinyOS [3] is an event driven operat-
ing system designed to provide support for deeply embedded systems, which requires
concurrency intensive operations while constrained by minimal hardware resources.

7 Conclusions

In this paper we presented GAS-OS, a middleware for building UbiComp applications
from individual artifacts using the plug/synapse abstraction layer. GAS-OS, being a
component framework, determines the component interfaces and the rules governing
their composition, and provides a clear separation between computational and compo-
sitional aspects of such applications, leaving the latter to ordinary people, while the
former can be undertaken by designers or engineers. End-users only have to compose
their applications as instances of the system. As a component-based application can be
reconfigured to meet new requirements at a low cost, composition achieves adaptabil-
ity and evolution. The possibility to reuse objects for purposes not accounted for dur-
ing the design opens roads for emergent uses of artefacts that result from actual use.

References

1. Becker C. et al., “BASE - A Micro-broker-based Middleware For Pervasive Computing”,
in Proceedings of the 1st IEEE International Conference on Pervasive Computing and
Com-munication (PerCom03), Fort Worth, USA, 2003.

2. Christopoulou E., Kameas A., “GAS Ontology: an ontology for collaboration among ubiq-
uitous computing devices”, International Journal of Human – Computer Studies, Vol. 62,
issue 5, Protégé: Community is Everything (2005), pp 664-685, Elsevier Ltd.

3. Hill J. et al., “System architecture directions for networked sensors”, In Architectural Sup-
port for Programming Languages and Operating Systems. (2000) 93-104

4. Holmquist L.E. et al., “Smart-Its Friends: A Technique for Users to Easily Establish Con-
nections between Smart Artifacts”, in Proc. of UbiComp 2001, Atlanta, USA, Sept. 2001.

5. IST Advisory Group, “Scenarios for Ambient Intelligence in 2010-full”, February 2001.
6. Kameas A. et al., “An Architecture that Treats Everyday Objects as Communicating Tan-

gible Components”, in Proc. of the 1st IEEE PerCom, Fort Worth, USA, 2003.
7. Markopoulos P., Mavrommati I., Kameas A., “End-User Configuration of Ambient Intel-

ligence Environments: Feasibility from a User Perspective”, In the proc. of the 2nd Euro-
pean Symposium on Ambient Intelligence, LNCS 3295, pp. 243-254, November 2004.

8. Román M., Campbell R.H., “GAIA: Enabling Active Spaces”, Proceedings of the 9th
ACM SIGOPS European Workshop, pp. 229-234, Kolding, Denmark, September 2000

9. Accord project website: http://www.sics.se/accord/home.html
10. EJC website: http://www.embedded-web.com/
11. Oxygen project website: http://oxygen.lcs.mit.edu/
12. Simple Network Application Platform (SNAP) website: http://snap.imsys.se/

daisy
Rectangle

	Introduction
	Design Goals
	Designing the Middleware to Support UbiComp Applications
	GAS-OS Architecture
	GAS Ontology Manager

	Building a Real Life Home Application
	System Evaluation
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

